Kinematics of soft-bodied, legged locomotion in Manduca sexta larvae.

نویسندگان

  • Barry Trimmer
  • Jonathan Issberner
چکیده

Caterpillar crawling is distinct from that of worms and molluscs; it consists of a series of steps in different body segments that can be compared to walking and running in animals with stiff skeletons. Using a three-dimensional kinematic analysis of horizontal crawling in Manduca sexta, the tobacco hornworm, we found that the phase of vertical displacement in the posterior segments substantially led changes in horizontal velocity and the segments appeared to pivot around the attached claspers. Both of the motions occur during vertebrate walking. In contrast, vertical displacement and horizontal velocity in the anterior proleg-bearing segments were in phase, as expected for running gaits coupled by elastic storage. We propose that this kinematic similarity to running results from the muscular compression and release of elastic tissues. As evidence in support of this proposal, the compression and extension of each segment were similar to harmonic oscillations in a spring, although changes in velocity were 70 degrees out of phase with displacement, suggesting that the spring was damped. Measurements of segment length within, and across, intersegmental boundaries show that some of these movements were caused by folding of the body wall between segments. These findings demonstrate that caterpillar crawling is not simply the forward progression of a peristaltic wave but has kinetic components that vary between segments. Although these movements can be compared to legged locomotion in animals with stiff skeletons, the underlying mechanisms of caterpillar propulsion, and in particular the contribution of elastic tissues, remain to be discovered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The substrate as a skeleton: ground reaction forces from a soft-bodied legged animal.

The measurement of forces generated during locomotion is essential for the development of accurate mechanical models of animal movements. However, animals that lack a stiff skeleton tend to dissipate locomotor forces in large tissue deformation and most have complex or poorly defined substrate contacts. Under these conditions, measuring propulsive and supportive forces is very difficult. One gr...

متن کامل

Humidity Detection and Hygropreference Behavior in Larvae of the Tobacco hornworm, Manduca sexta

Water is a critical resource for any terrestrial animal, especially for a soft-bodied insect such as larvae of the tobacco hornworm, Manduca sexta L. (Lepidoptera: Sphingidae). Strategies for coping with a dry environment might include seeking out regions of high relative humidity that reduce desiccative stress, or to find and imbibe liquid water. Desiccated larvae placed in a linear arena with...

متن کامل

Visceral-Locomotory Pistoning in Crawling Caterpillars

Animals with an open coelom do not fully constrain internal tissues, and changes in tissue or organ position during body movements cannot be readily discerned from outside of the body. This complicates modeling of soft-bodied locomotion, because it obscures potentially important changes in the center of mass as a result of internal tissue movements. We used phase-contrast synchrotron X-ray imag...

متن کامل

Kinematics of horizontal and vertical caterpillar crawling.

Unlike horizontal crawling, vertical crawling involves two counteracting forces: torque rotating the body around its center of mass and gravity resisting forward movement. The influence of these forces on kinematics has been examined in the soft-bodied larval stage of Manduca sexta. We found that crawling and climbing are accomplished using the same movements, with both segment timing and prole...

متن کامل

The biomechanical and neural control of hydrostatic limb movements in Manduca sexta.

Caterpillars are ecologically successful soft-bodied climbers. They are able to grip tightly to foliage using cuticular hooks at the tips of specialized abdominal limbs called prolegs. The neural control of proleg retraction has been examined in some detail but little is known about how prolegs extend and adduct. This is of particular interest because there are no extensor muscles or any obviou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biological bulletin

دوره 212 2  شماره 

صفحات  -

تاریخ انتشار 2007